Uncertain Innovation and R&D Network Formation

Pascal Billand Christophe Bravard Jacques Durieu Sudipta Sarangi

 Collaboration among firms in innovative activities is now widespread (Hagedoorn, 2002; Powell et al., 2005)

 Collaboration among firms in innovative activities is now widespread (Hagedoorn, 2002; Powell et al., 2005)

• Majority of these collaborations are bilateral.

- Collaboration among firms in innovative activities is now widespread (Hagedoorn, 2002; Powell et al., 2005)
- Majority of these collaborations are bilateral.
- Understanding collaboration networks and their impact on the industry is important.

- Why do firms collaborate in R&D?
 - Help by lowering R&D costs
 - Help share the risk associated with innovation

- Why do firms collaborate in R&D?
 - Help by lowering R&D costs
 - Help share the risk associated with innovation
- R&D collaborations do not always lead to an innovation.

- Why do firms collaborate in R&D?
 - Help by lowering R&D costs
 - Help share the risk associated with innovation
- R&D collaborations do not always lead to an innovation.
- Firms characteristics (*technological, business or product similarity, geographical proximity*) affect innovation success probability

Model features

• Oligopoly setting in which (horizontally related) firms form pair-wise collaborative links with other firms.

• These bilateral links require commitment of resources which are used for R&D.

Model features

- Oligopoly setting in which (horizontally related) firms form pair-wise collaborative links with other firms.
- These bilateral links require commitment of resources which are used for R&D.
- Successful R&D leads to innovations.
- If an innovation occurs it results in lower production costs for the firms involved in the link.

 Goyal and Moraga-Gonzales (2001); Goyal, Moraga-Gonzales and Konovalov (2008):

Analyze effort in R&D – the interaction between effort of a firm in collaboration link and their effort in other R&D projects in equilibrium.

• Goyal and Moraga-Gonzales (2001); Goyal, Moraga-Gonzales and Konovalov (2008):

Analyze effort in R&D – the interaction between effort of a firm in collaboration link and their effort in other R&D projects.

• Konig *et al*. (2012)

Direct and indirect network spillovers matter, so every firm in a component has the same payoff. No market structure and strategic element is missing.

• Most directly related to Goyal and Joshi (2003)

Innovation between collaborating firms is pairwise and it occurs with certainty. Focus on the structure of equilibrium networks.

- Most directly related to Goyal and Joshi (2003) Innovation between collaborating firms is pairwise and it occurs with certainty. Focus on the structure of equilibrium networks.
- Westbrock (2010) and Billand et al. (2015) Similar setting, but for welfare comparisons.

Structure of the Game

- Stage 1: Firms simultaneously chose the collaborative R&D links they wish to form.
 - These choices induce a network g
 - They lower expected R&D costs

Structure of the Game

- Stage 1: Firms simultaneously chose the collaborative R&D links they wish to form.
 - These choices induce a network g
 - They lower expected R&D costs

Stage 2: Firms play simultaneous oligopoly game

• $N = \{1, ..., i, j, ..., n\}, n \ge 3.$

• $N = \{1, ..., i, j, ..., n\}, n \ge 3.$

- $g_{ij} = 1: i$ intends to form a collaborative link with j
- $g_{ij} = 0$ means no such desire.

• Strategy of firm $i: g_i = \{\{g_{ij}\}_{j \in N_{-i}}\}$

- $N = \{1, ..., i, j, ..., n\}, n \ge 3.$
- $s_{ij} = 1: i$ intends to form a collaborative link with j
- $s_{ij} = 0$ means no such desire.
- Strategy of firm $i: s_i = \{\{s_{ij}\}_{j \in N_{-i}}\}$
- A link is formed iff $s_{ij} = s_{ji} = 1$
- A strategy profile s = {s₁, s₂, ..., s_n} induces a network g^[s].

- g(i): set of firms with whom firm i has a link.
- |g(i)| its cardinality
- $\mathcal{N}(g)$: set of firms with at least one link.
- g[N']: sub-network of g defined on $N' \subset \mathbb{N}$
- g_{-i} : $g[N \setminus \{i\}]$
- g+ij; g-ij

• Complete and Empty

• Group dominant network: $g[\mathcal{N}(g)]$ is complete.

A group-dominant network

A 2-group-dominant network

 2/2 hierarchical network: Partition g into 4 groups which are all complete and firms in N₁ are linked only to firms in N₂ U N₃ and firms in N₂ are linked only to firms in N₄.

A 2|2-hierarchical network

A 1|2-hierarchical network

A 1|(1, 1)-hierarchical network

 Nested split graph: Have a nested neighborhood structure, i.e., the set of neighbors of each agent is contained in the set of neighbors of each higher degree agent.

A NSG

A 2-NSG

A multi-NSG

Flows/probabilities of innovation

 ρ_{ij} ∈ (0,1]: probablity that the R&D collaboration

 between *i* and *j* yields a successful innovation

Flows/probabilities of innovation

 ρ_{ij} ∈ (0,1]: probablity that the R&D collaboration

 between *i* and *j* yields a successful innovation

- $\rho_{ij} = \rho_{ji}$ and $B = (\rho_{ij})_{i \in N, j \in N_{-i}}$
 - Probabilities are independent of the network
 - Probabilities are independent of each other
 - These probabilities can be a function of firm characteristics

Flows/probabilities of innovation

 ρ_{ij} ∈ (0,1]: probablity that the R&D collaboration

 between *i* and *j* yields a successful innovation

•
$$\rho_{ij} = \rho_{ji}$$
 and $B = (\rho_{ij})_{i \in N, j \in N_{-i}}$

 Probabilities are independent of the network; of each other; and can be a function of firm characteristics

• Each firm has a flow degree:

$$\begin{split} &U_i(g) = \sum_{j \in g(i)} \rho_{ij} \text{ and } U(g) = \sum_{ij \in g} \rho_{ij} \\ &U(g_{-i}) = U(g) - U_i(g) \end{split}$$

Stability concept

• A network *g* is a pair-wise equilibrium network if the following conditions hold (*Goyal and Joshi*, 2006):

1. There is a Nash equilibrium strategy profile which supports *g*.

Stability concept

• A network *g* is a pair-wise equilibrium network if the following conditions hold (*Goyal and Joshi*, 2006):

1. There is a Nash equilibrium strategy profile which supports *g*.

2. For
$$g_{ij} = 0$$
,
 $\Pi^*{}_i (g + ij) - \Pi^*{}_i (g) > 0 \Longrightarrow$
 $\Pi^*{}_j (g + ij) - \Pi^*{}_j (g) < 0$

How innovations affects cost

• Each R&D link requires a fixed investment: f > 0

How innovations affects cost

• Each R&D link requires a fixed investment: f > 0

Cost function

$$c_i(g) = \gamma_0 - \gamma \sum_{j \in g(i)} \rho_{ij} = \gamma_0 - \gamma U_i(g)$$

Each collaboration is associated with a specific innovation.

How innovations affects cost

- Each R&D link requires a fixed investment: f > 0
- Cost function

$$c_i(g) = \gamma_0 - \gamma \sum_{j \in g(i)} \rho_{ij} = \gamma_0 - \gamma U_i(g)$$

A network g induces an expected cost vector for firms:
 c(g) = (c₁(g), c₂(g), ..., c_n(g))

• Demand: $p = \alpha - \sum_{i \in N} q_i$

• Demand: $p = \alpha - \sum_{i \in N} q_i$

• Stage 2 profits:

$$\Pi^*{}_i(g) = \left(\frac{\alpha - \gamma_0 + n\gamma U_i(g) - \gamma \sum_{j \in N\{i\}} U_j(g)\right]}{n+1}\right)^2$$

 $= (a + bU_i(g) - cU(g_{-i}))^2 = \varphi(U_i(g), U(g_{-i}))$

- Demand: $p = \alpha \sum_{i \in N} q_i$
- Stage 2 profits: $\Pi_{i}^{*}(g) = \left(\frac{\alpha - \gamma_{0} + n\gamma U_{i}(g) - \gamma \sum_{j \in N\{i\}} U_{j}(g)\right]}{n+1}\right)^{2}$

$$= (a + bU_i(g) - cU(g_{-i}))^2 = \varphi(U_i(g), U(g_{-i}))$$

Note that marginal profits from a additional link are increasing in the first argument and decreasing in the second.

• Stage 1 profits: $\prod_{i=1}^{i} (g) = \prod_{i=1}^{i} (g) - |g(i)|f$

• CS =
$$1/2\left(\frac{n(\alpha-\gamma_0)+2\gamma U(g)}{n+1}\right)^2 = \phi(U(g))$$

• Stage 1 profits: $\prod_{i=1}^{i} (g) = \prod_{i=1}^{i} (g) - |g(i)|f$

• CS =
$$1/2\left(\frac{n(\alpha-\gamma_0)+2\gamma U(g)}{n+1}\right)^2 = \phi(U(g))$$

- Social welfare: $W(g) = CS + \prod_{i=1}^{k} (g) = \phi(U(g), |g|)$
- An efficient network is one that maximizes W(g).

- Can we use stylized facts to improve things?
 - Characteristics like geographical, technological or business similarities of firms matter.

- Can we use stylized facts to improve things?
 - Characteristics like geographical, technological or business similarities of firms matter.

The Insider-Outsider model

- Two groups of firms: N¹ and N²
- Success probability between firms *i* and *j* is higher if they belong to the same group.
- Formally, $\rho_{ij} = \rho^I$ if $i, j \in N^t, t \in \{1, 2\}$ and ρ^O otherwise, where $\rho^I > \rho^O$.

- Can we use stylized facts to improve things?
 - Some firms are more aggressive about innovations
 - Firms with greater market share are more likely to be innovators

- Can we use stylized facts to improve things?
 - Some firms are more aggressive about innovations
 - Greater market share \rightarrow more likely to be innovators

High and Low innovative firms

- Two groups of firms N^H and N^L with the same cardinality.
- Formally, $\rho_{ij} = \rho^t$ if $i, j \in N^t, t \in \{H, L\}$ and ρ^M otherwise, where $\rho^H > \rho^M > \rho^L$.

Results: Pws-Equilibrium

Proposition 0: What if links are not costly?

Suppose *f* = 0. Then a pair-wise equilibrium network is the complete network.

Results: Pws-Equilibrium

Proposition 1: What does uncertainty imply for link formation?

Let g be a pair-wise equilibrium network. If $i \in \mathcal{N}^{\rho}$ and $j \in \mathcal{N}^{\rho'}$, with $\rho \geq \rho'$ and $\rho_{ij} > \rho$, then there is a link between i and j in g.

Corollary 1: One probability

Let g be a pair-wise equilibrium network. If $\rho_{ij} = \rho$, then g is a group dominant network.

 \Rightarrow Proposition 4.1 of Goyal and Joshi, 2003 is a special case when innovations occur with full certainty.

⇒By continuity the result is also true when probabilities differ but are sufficiently similar.

Corollary 2: Two probabilities

Suppose the assumptions of the I-O framework are satisfied. If g is a non-empty pair-wise equilibrium network, then it is a group dominant network, or a 2group dominant network or a 2/2 hierarchical network.

A group-dominant network

A 2-group-dominant network

Corollary 3: Three probabilities

Suppose the assumptions of the H-L framework are satisfied. If g is a non-empty pair-wise equilibrium network, then it is a group dominant network, or a 2group dominant network, or a 1|2 hierarchical network, or a 1|(1,1) hierarchical network. Moreover, (i) firms in N^H that have formed links are all linked together, and (ii) firms in N^H that have formed

links with firms in N^L are linked with all firms in N^L that have formed links.

A 2|2-hierarchical network

A 1|2-hierarchical network

A 1|(1, 1)-hierarchical network

 Pairwise equilibrium networks are group dominant networks or variations (hierarchical versions) of those.

2. The most valuable links may not be formed in a pairwise stable network.

Proposition 2 (Idea): Non monotonicity of pw-equilibrium There exist situations in which: If the success probabilities of links in a pw-equilibrium increase, then some existing links may be deleted.

Network g

Network g'

Proposition 2 (Idea): Non monotonicity of pw-equilibrium

There exist situations in which: If the success probabilities of links in a pw-equilibrium increase, then some existing links may be deleted.

- Welfare is lower in the new equilibrium.
- This has implications for policy.

Network g

Network g'

• **Proposition 3**: Finding efficient networks

Let g be an efficient network that contains a link between firms i and j. If $c_j \ge c_{j'}$ and $\rho_{ij} \le \rho_{ij'}$, then there is a link between firms i and j' in g.

Corollary 4: One probability

Suppose that for all $i, j \in N$, $\rho_{ij} = \rho$, then an efficient network is a NSG.

Corollary 4: One probability

Suppose that for all $i, j \in N$, $\rho_{ij} = \rho$, then an efficient network is a NSG.

Corollary 5: Two probabilities

Suppose the assumptions of the I-O framework are satisfied. If g is a non-empty efficient network, then it is a NSG, or a 2-NSG or a multi-NSG.

Corollary 6: Three probabilities

Suppose the assumptions of the H-L framework are satisfied. If g is a non-empty efficient network, then it is a NSG, or a group NSG or a multi-NSG. Moreover if $g[N^H] = \emptyset$, then $g[N^L] = \emptyset$.

Corollary 6: Three probabilities

Suppose the assumptions of the H-L framework are satisfied. If g is a non-empty efficient network, then it is a NSG, or a group NSG or a multi-NSG. Moreover if $g[N^H] = \emptyset$, then $g[N^L] = \emptyset$.

It is easy to show in the H-L framework that there is a conflict between stability and efficiency.

Nested split graphs

A NSG

A 2-NSG

A multi-NSG

Proposition 4: About a larger class of oligopoly games

Let $\Pi_i(g) = \sigma(U_i(g), U(g_{-i}))$

Proposition 4: About a larger class of oligopoly games

Let $\Pi_i(g) = \sigma(U_i(g), U(g_{-i}))$

Suppose the payoff function is as shown above and σ is strictly increasing in its first argument, strictly convex and sub-modular. Let g be a pw-equilibrium network and suppose $ij \in L(g)$ and $i'j' \notin L(g)$. Then either $\bigcup_{ij}^{m}(g) > \bigcup_{i'j'}^{m}(g)$ or $\rho_{ij} > \rho_{i'j'}$.

- These results hold for the differentiated Cournot and Bertrand models.
- Analogous version of Proposition 1 (Corollary 7) will exist in this case.
- Non-monotonicity in links (Proposition 2) result will hold
- Conditions for efficient networks are shown (Proposition 5) and an analogous version of Proposition 3 can be shown.

Summing up

- On introducing uncertainty we find that
 - Pws-equilibrium networks are dominant networks or their variations, i.e., Goyal and Joshi (2003) is a special case.
 - Efficient networks are variations of NSG, i.e.,
 Westbrock (2010) and Billand et al. (2015) are special cases.

Summing up

- On introducing uncertainty we find that
 - Pws-equilibrium networks are dominant networks or their variations, i.e., Goyal and Joshi (2003) is a special case.
 - Efficient networks are variations of NSG, i.e., Westbrock
 (2010) and Billand et al. (2015) are special cases.
- Public policy aimed at increasing innovative activity has to be done carefully.
- Results can be extended to a general class of games.

Two things...

- Goyal and Joshi (2003) use 3 properties to obtain their results:
 - 1) All links lead to the same reduction in marginal costs
 - 2) The profit function is convex in own links
 - 3) The profit function is sub-modular

Two things...

- Goyal and Joshi (2003) use 3 properties to obtain their results:
 - 1) All links lead to the same reduction in marginal costs
 - 2) The profit function is convex in own links
 - 3) The profit function is sub-modular
- Uncertainty not only makes the model more realistic, it introduces heterogeneity and relaxes (1)
 - Alters the formal analysis
 - Goyal and Joshi (2003) is a special case

- What if firms can absorb innovations at different rates?
 - The same innovation can affect two firms differently.

Two things...

- What if firms can absorb innovations at different rates?
 - The same innovation can affect two firms differently.

 \Rightarrow *A "tyranny of the weakest" type situation in equilibrium.*

⇒ Positive assortative matching in equilibrium.

